Supermassive Black Holes at the Edge of Space and Time

2015-02-26-NGC4889.jpg

Astronomers have known about these objects for decades, but in the depths of cosmic time, it’s hard to understand how they can grow so quickly — or maybe not!

Thanks to the painstaking research conducted by astronomers using the Hubble Space Telescope in the 1990s, the consensus is that virtually all large galaxies have at their centers massive black holes that formed over the course of billions of years. Our own galaxy, the Milky Way, has one of these massive beasts, whose mass is about 3 million times that of the Sun. The monster black hole at the center of the giant galaxy NGC 4889 has a mass that’s estimated to be 20 billion times that of the Sun. And this galaxy is right in our cosmic neighborhood, only about 300 million light-years from the Sun!

NGC 4889 (Credit: Sloan Digital Sky Survey)

Let me give you a better perspective on what a black hole looks like. The radius of a simple black hole (nonrotating) is about 2.8 kilometers for every solar mass it contains. This defines the radius of its event horizon. Once inside the event horizon, you are dead meat in a matter of a millisecond. You cannot escape the intense —> Read More Here

New compounds protect nervous system from the structural damage characteristic of multiple sclerosis

A newly characterized group of pharmacological compounds block both the inflammation and nerve cell damage seen in mouse models of multiple sclerosis, according to a study. Multiple sclerosis is a disease of the brain and spinal cord, where for unknown reasons, the body’s immune system begins an inflammatory attack against myelin, the protective nerve coating that surrounds nerve fibers. Once myelin is stripped from these fibers, the nerve cells become highly susceptible to damage, which is believed to underlie their destruction, leading to the steady clinical decline seen in progressive forms of multiple sclerosis. —> Read More Here

First detailed microscopy evidence of bacteria at the lower size limit of life

Scientists have captured the first detailed microscopy images of ultra-small bacteria that are believed to be about as small as life can get. The existence of ultra-small bacteria has been debated for two decades, but there hasn’t been a comprehensive electron microscopy and DNA-based description of the microbes until now. The cells have an average volume of 0.009 cubic microns (one micron is one millionth of a meter). About 150 of these bacteria could fit inside an Escherichia coli cell and more than 150,000 cells could fit onto the tip of a human hair. —> Read More Here

1 2 3 2,000