China to Relocate Thousands for World’s Largest Radio Telescope

China's new radio telescope, the world's largest, should be completed by September 2016. Image: FAST

China is building the world’s largest radio telescope, and will have to move almost 10,000 people from the vicinity to guarantee the telescope’s effectiveness. The telescope, called the Five-hundred-meter Aperture Spherical Telescope (FAST), will be completed in September, 2016. At 500 meters in diameter, it will surpass the workhorse Arecibo radio observatory in Puerto Rico, which is 305 meters in diameter.China has routinely moved large amounts of people to make room for developments like the Three Gorges Dam. But in this case, the people are being moved so that FAST can have a five kilometre radio-quiet buffer around it.According to China’s news agency Xinhua, an unnamed official said the people are being moved so that the facility can have a “sound electromagnetic wave environment.” Common devices and equipment like microwave ovens, garage door openers, and of course, mobile phones, all create radio waves that FAST will sense and which can interfere with the telescope’s operation.The telescope’s high level of sensitivity “will help us to search for intelligent life outside of the galaxy,” according to Wu Xiangping, director-general of the Chinese Astronomical Society. But aside from searching for radio waves that could be from distant alien civilizations, like SETI does, the enormous dish will also to be used to study astronomical objects that emit radio signals, like galaxies, pulsars, quasars, and supernovae. The radio signals from these objects can tell us about their mass, and their distance from us. But the signals are very weak, so radio telescopes have to be huge to be effective.Radio telescopes are also used to send out radio signals and bounce them off objects like asteroids and the other planets in our Solar System. These signals are detected by the telescope when they return to Earth, and used to create images.Huge radio telescopes —> Read More