Plugging Into Your Brain

A few weeks ago, I wrote about Ray Kurzweil’s wild prediction that in the 2030s, nanobots will connect our brains to the cloud, merging biology with the digital world.

Let’s talk about what’s happening today.

Over the past few decades, billions of dollars have been poured into three areas of research: neuroprosthetics, brain-computer interfaces and optogenetics.

All three areas of research are already transforming humanity and solving many of the problems that seem to have stumped our natural evolutionary processes.

This blog is about the latest developments in these fields — from the most exciting applications today to the most game-changing applications of the future.

Neuroprosthetics, Brain-Computer Interfaces, and Optogenetics

Your brain is composed of 100 billion cells called neurons.

These cells make you who you are and control everything you do, think and feel.

In combination with your sensory organs (i.e. eyes, ears), these systems shape how you perceive the world.

And sometimes, they can fail.

That’s where neuroprosthetics come into the picture.

The term “neuroprosthetics” describes the use of electronic devices to replace the function of impaired nervous systems or sensory organs.

They’ve been around for a while — the first cochlear implant was implanted in 1957 to help deaf individuals hear — and since then, over 350,000 have been implanted around the world, restoring hearing and dramatically improving quality of life for those individuals.

But such a cochlear implant only hints at a very exciting field that researchers call the brain-computer interface, or BCI: the direct communication pathway between the brain (central nervous system, or CNS) and an external computing device.

The vision for BCI involves interfacing the digital world with the CNS for the purpose of augmenting or repairing human cognition.

And how we interface with the CNS is where it becomes interesting.

There are two approaches. The first is physically connecting wires and neurons with microscopic arrays of metallic pins that —> Read More