The Martian: Farming on Mars Is Not Science Fiction


In October 1982, I was close to achieving intellectual escape velocity. I had just been selected to receive a grant from NASA to study how to grow food to sustain astronauts on long-term space missions. This is not a trivial task. Thirty-three years later, my students and I are still tinkering with the inputs to the space farm.

We have long been interested in the possibility of sustaining life away from Earth. Like Andy Weir’s character, Mark Whatney, from The Martian, we calculate the mass and energy balances needed to maintain space colonies.

The photo below shows radish and lettuce plants growing under light emitting diodes (LEDs) in one of our research chambers. These plants are experiencing the “orbital photoperiod” of the International Space Station, which cycles every 90 minutes: 60 minutes of bright light followed by 30 minutes darkness. The crops are grown in soil-less media and watered with a hydroponic solution by drip irrigation. In preliminary

There are many challenges and many benefits of growing food on Mars. For a long-term mission, it isn’t cost effective to haul food to Mars if we can grow it there. Eat local.

Eating local isn’t the only benefit. Crops do more than provide food. If we grow 100 percent of our food in a closed system, the photosynthesis of the crop plants keeps the oxygen and carbon dioxide in perfect balance. But these critical gasses are not in balance every minute of every day. Our plants do not automatically grow faster to provide extra oxygen just because we go for a run on the treadmill. We need buffers to stabilize their concentrations.

Optimizing the mass of these buffers is a huge challenge. They must be big enough to sustain life through times of instability, and yet small enough —> Read More